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INTRODUCTION

Ocelots Leopardus pardalis are listed in Appendix
I of the Convention on International Trade in Endan-
gered Species of Wild Fauna and Flora (CITES), indi-
cating that it is a species threatened with extinction
for which trade is restricted (CITES 2005). The IUCN
Red List has catalogued the species as being of Least
Concern (IUCN 2012), but in Mexico, ocelots are
listed as endangered (Norma Oficial Mexicana 2010).
Their main threats are habitat loss, fragmentation,

and illegal hunting (Paviolo et al. 2015). Ocelots are
distributed from southern Arizona and Texas in the
USA to northern Argentina (Nowell & Jackson 1996,
Sunquist & Sunquist 2002). The ocelots that inhabit
Sonora, Mexico, are near the northern limit of the
species’ distribution, where habitat conditions are
drier than other locations throughout their range.
Ocelots live in a wide variety of habitats, including
mangroves, tropical wet forest, tropical dry forest,
and temperate montane vegetation (Murray & Gard-
ner 1997, Sunquist & Sunquist 2002). They are also
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ABSTRACT: Ocelots Leopardus pardalis are legally protected in Mexico as an endangered spe-
cies. The main threats throughout the species’ range are habitat loss and fragmentation. The
ocelot population that inhabits Sonora, Mexico, is at the northern limit of the species’ distribution
and knowledge about it is still scarce. We used remote camera data from 2010−2012 and spa-
tially explicit capture-recapture (SECR) models for density estimation, and the Barker robust
design mark-recapture model to estimate survival, abundance, and density of ocelots in an arid
region in northeastern Sonora. Average apparent survival was 0.65 for females and 0.63 for
males; abundance estimates (mean ± SE) ranged from 2.02 ± 0.13 to 7.06 ± 0.24 ocelots. Average
(±SE) density was 0.63 ± 0.06 females 100 km−2 and 0.95 ± 0.08 males 100 km−2 using Barker
robust design, and 0.51 ± 0.26 females 100 km−2 and 0.77 ± 0.25 males 100 km−2 using the SECR.
Our survival and density estimates are the lowest reported. However, due to the low human
population density in our study area, we consider that our findings must be associated with nat-
ural processes rather than human-caused disturbance, without dismissing an additive factor by
the latter. Arid environmental features could have a negative influence on primary productivity
and consequently on prey availability, limiting ocelot survival and density in this region. Large
tracts of unpopulated wildlands over a non-fragmented landscape favor ocelots in this area, and
it is important to maintain current habitat conditions for this Neotropical species to continue
thriving in this region of North America.
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found in the semi-arid thornscrub and woodlands of
Sonora, Chihuahua, and Arizona (López-González et
al. 2003, 2014, Grigione et al. 2007). Ocelots are not
generalists in any of these habitat types and are usu-
ally associated with dense vegetation cover (Harve-
son et al. 2004, Horne et al. 2009).

Most published studies about ocelot populations
across their distribution are focused on abundance
and population densities (Trolle & Kéry 2003, 2005,
Maffei et al. 2005, Di Bitetti et al. 2006, 2008, Dillon &
Kelly 2007, 2008, Sternberg & Mays 2011, Rodgers et
al. 2014, Martínez-Hernández et al. 2015). There are
few studies that report other important demographic
parameters such as survival rates (but see Haines et
al. 2005).

There is a lack of knowledge about the northern-
most population of ocelots that inhabit the aridlands
of Sonora, Chihuahua, and Arizona. In this region,
they face extreme climatic conditions with contrast-
ing seasonal changes, low precipitation, xeric vege-
tation, and open canopy cover in most of the area
(Brown 1994). Our objective was to estimate the sur-
vival, abundance, and density of ocelots in a region
of Sonora, Mexico, and contribute to the knowledge
and understanding of ocelot populations in their

northernmost distribution, as well as to establish a
basis for long-term monitoring of this population.
This information can be applied to improve the
management and conservation of ocelots in the
region and other areas with similar environmental
conditions.

MATERIALS AND METHODS

Study area

The study area is located in the foothills of the Sierra
Madre Occidental in northwestern Mexico near Sa -
hu aripa, Sonora, between 29.199° N, 108.983° W and
29.541° N, 109.236° W. It is comprised of protected
private land in the Northern Jaguar Reserve (NJR)
without cattle, and 10 adjoining cattle ranches with a
conservation agreement that includes protection
for all wildlife inside their boundaries (Gutiérrez-
González et al. 2015). Until 2012, the NJR comprised
220 km2, and the neighboring private properties
comprised approximately 130 km2 (Fig. 1). Human
activity in this area is scarce. The principal economic
activity in the region is extensive cattle ranching,
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Fig. 1. Study area (inset: location within Mexico) and camera stations, January 2010 to July 2012. Dots inside the polygon are 
cameras located in the private reserve; dots outside the polygon are cameras at the neighboring cattle ranches



Gómez-Ramírez et al.: Ocelots in northwestern Mexico

where cattle are free-ranging and without constant
supervision. The nearest human settlement, Sahuar-
ipa, is >50 km away and accessed by a dirt road used
only by the ranch owners.

The climate in this region is warm and dry with an
average annual temperature >18°C. Annual rainfall
ranges from 400 to 800 mm (CONABIO 2004, INEGI
2015). Extreme temperatures reported in the area
vary between −7 and 46°C during winter and summer,
respectively. Altitude ranges from 370 to 1600 m.
Therefore, the vegetation is a heterogeneous mosaic
comprised of foothills thornscrub (Acacia cochliacan-
tha, Prosopis velutina, Stenocereus thurberi, Haema-
toxylum brasiletto, Lysiloma divaricatum, Fouquieria
macdougalii), relicts of tropical deciduous forest (Ceiba
acuminata, Ipomoea arborescens, Erythrina flabelli-
formis, Bursera spp.), oak woodlands (Quercus chi-
huahuensis, Q. albocincta, Q. toumeyi), and riparian
vegetation (Salix gooddingii, Havardia sonorae, Pro -
so pis velutina, Platanus wrightii, Ambrosia ambrosi o -
ides) (Brown 1994, Felger et al. 2001).

Remote camera survey

The ocelot (Leopardus pardalis) camera survey
was derived from a long-term jaguar (Panthera
onca) study in the same area (Gutiérrez-González
et al. 2015). We selected information from January
2010 to July 2012 for analysis because of database
availa bility. During these years, cameras were set
up with a minimum distance of 1 km between each
station (Fig. 1). There was no systematic survey
design, as the number of cameras and camera loca-
tions changed based on personal observations across
the years to maximize detections. Cameras were
attached to trees in front of areas used by wildlife
(pathways, stream bottoms, and dirt roads). In
select locations, and depending on camera avail-
ability, we placed cameras in paired stations
(31.94% of stations in 2010, 28.12% in 2011, and
45.36% in 2012). The digital remote camera models
we used were Cuddeback® Capture, Capture IR,
Attack, and Attack IR (Non Typical); Wildview®

Xtreme 2 and Xtreme 5 (GSM Outdoors); as well as
a CamTrakker® 35 mm film camera model (Cam-
Trakker) (Table 1). All cameras were set to be
active 24 h a day with a 5 min delay between cap-
ture events, recording 1 picture per event. All cam-
eras were active year-round and checked monthly
to download images, change batteries, and make
sure they were functioning properly. No bait or lure
was used to attract animals.

Ocelot identification

Ocelots were individually identified by their
unique spot patterns in the photographs (Karanth
1995, Trolle & Kéry 2003). An individual code was
assigned to each ocelot. Males were differentiated
from females by the presence of testicles (Trolle &
Kéry 2003). Photographs which were not clear
enough to enable individual identification were dis-
carded. Only adult ocelots whose sex was identified
were selected for analysis.

Data analysis

Barker robust design (Kendall et al. 2013)

We designed our ocelot encounter history with
3 primary periods: January to April of 2010, 2011,
2012, respectively. The primary periods each had
8 secondary periods that consisted of 15 d pooled
detections. The pooling of daily data reduced the
number of zeros (no detections) in the encounter his-
tory (Otis et al. 1978). We selected the months be -
tween January and April as the primary periods to
meet the assumption of demographic closure, sup-
ported by our field observations as we documented
3 ocelot births that occurred during the summer.
Havlanová & Gardiánová (2013) observed that, in
captivity, a higher number of litters ocurred during
the summer, which was corroborated by Laack et al.
(2005), who found that ocelot births in Texas oc -
curred between mid-April and late December.

We considered each sex as a different group. Esti-
mates of abundance can be negatively biased if sex is
not included in the models (Efford & Mowat 2014).
Individual detection histories were recorded, with
live detections designated as ‘1’ and no detections
designated as ‘0’. Resightings outside of the primary
periods (remainder of the year) were denoted by a ‘2’
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Camera model 2010 2011 2012

Cuddeback® (digital models) 54 64 73
Wildview® (digital models) 28 17 22
CamTrakker® (35 mm film) 12 0 0

Total 94 (95) 81 (112) 95 (83)

Table 1. Number of cameras used (by camera model) during
the study. Number of different camera stations included in
parentheses (number of stations is higher than number of
cameras in some years because camera locations changed 

through the year)
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in the corresponding column (Kendall et al. 2013).
The lack of dead ocelot records precluded us from
including them in the analysis.

The Barker robust design includes 9 parameters to
model: (1) survival probability (S) between 2 primary
periods (due to the lack of deceased records, we
referred to this as apparent survival probability, ϕ);
(2) capture/detection probability (p) and (3) recap-
ture probability (c); (4) fidelity to the area (F), which
is the probability of an individual remaining in the
studied population between 2 primary periods;
 availability probability of individuals being detected
between 2 primary periods, given that in the previ-
ous period those individuals were (5) available (a″),
(6) or not (a′); (7) dead recovery probability (r);
resighting probability between 2 primary periods,
given that individuals (8) survived (R), (9) or not (R′) in
the previous period. Abundance (N), the portion of
the population that is available in the study area for a
specific primary period is a derived parameter (Ken -
dall et al. 2013). This model and the previous Barker
(1997) model were developed to include data from
individual dead recoveries, but these models have
been previously applied to live-capture data by set-
ting the dead recovery-related parameters to zero
(e.g. Collins & Doherty 2006, Ruiz-Gutiérrez et al.
2012, Gutiérrez-González et al. 2015). We followed
this approach for our data analysis and set the r and
R′ parameters to 0.

Model construction was performed in the program
MARK (White & Burnham 1999). We first explored
the relationship between p and c, and possible varia-
tion among years. Apparent survival (ϕ) was then
modeled in 3 ways: constant for all years; with varia-
tion among years; and including an uncommon in -
tense freeze that occurred in February 2011. Avail-
ability probabilities (a″ and a′) were tested as either
constant or time-variant (years), and with a model
that precluded temporal emigration with fixed values
(a″ = 1 and a′ = 0). Fidelity probability was modeled
as constant and as varying among years. We consid-
ered resight probability (R) as constant, as ocelots
exhibit territorial behavior (Sunquist & Sunquist
2002), and because the sampling effort remained the
same each primary period. All parameters were mod-
eled considering differences or not between sexes.
Finally, model selection was based on Akaike’s infor-
mation criteria corrected for small samples (AICc),
and model average was used due to model uncer-
tainty (Burnham & Anderson 2002). All parameter
estimates were reported according to model average
results. Comparisons between estimates were made
based on their standard error.

Spatially explicit capture-recapture (SECR) models

For a second ocelot density estimation, we used the
program SPACECAP (Gopalaswamy et al. 2012) with
3 different input data files: (1) capture information for
individuals with each capture associated with its
geographical location (WGS 84 UTM coordinates)
and the sampling occasion when capture occurred —
for sampling occasions, we used the same period as
for the Barker robust design (January−April) and
each of the 120 days was considered a sampling
occasion; (2) trap deployment details with the geo-
graphical location of each camera station and the
period it was active (1) or not (0); (3) the potential
home range or centers of activity areas covering a
total area of 3600 km2, with 899 potential activity
centers equally distributed across this area.

Analyses were performed in the program R (R Core
Team 2015) using the package SPACECAP version
1.1.0 (Gopalaswamy et al. 2014). We performed 1
analysis per sex per year (giving a total of 6), all of
them with 50 000 iterations, 2000 iterations as burn-
in period, thinning rate set to 10, and a data augmen-
tation value of 50 individuals.

Effective sampling area (ESA) and 
density estimation

Annual maximum mean distances moved (MMDM)
were calculated by averaging the maximum distance
moved by each individual that was detected at
>1 camera station (Karanth & Nichols 1998, Silver et
al. 2004). According to Maffei & Noss (2008) and
O’Brien (2011), if the sampling area is at least 4
times the known home range of the species, then the
MMDM can be considered equivalent to the diameter
of the home range. Half MMDM throughout the study
was considered the radius of a circular area around
each camera station. The sum of the overlapped areas
constituted the ESA and was calculated by year and
by sex (Karanth et al. 2004, Silver et al. 2004).

Density was obtained by dividing the annual abun-
dance estimates by the annual ESA (Karanth et al.
2004, Silver et al. 2004), and thus we were able to
obtain a density estimate per year and sex.

RESULTS

From January 2010 to July 2012, we accumulated
88 508 camera-days. We obtained 381 ocelot (Leopar-
dus pardalis) photographs, from which we identified
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33 ind. (8 females, 16 males, and 9 ind. with uniden-
tified sex). Due to Barker robust design constraints,
the months selected to establish the primary and sec-
ondary periods, and sex as a group, only 18 ocelots
(5 females, 13 males) were included in the encounter
history.

For the Barker robust design, 18 models were built
and tested, and the 4 best-supported models based
on the AICc are presented in Table 2.

The annual estimate of apparent survival proba-
bility was similar among years and between sexes,
ranging from (mean ± SE) 0.63 ± 0.10 to 0.65 ± 0.12,
and its average value across the 3 years was ϕ =
0.64 ± 0.003. Male survival decreased from 2011 to
2012; however, based on the overlap of the standard
error, this decrease was not significant (Table 3).
Fidelity probability was constant among years but
different by sex (F = 0.67 ± 0.19 for females and
0.58 ± 0.15 for males). Resight probability among
primary periods was R = 0.82 ± 0.17 for fe males and
0.91 ± 0.11 for males. De tection probability did not
vary between sexes, but it did vary between the
2010 primary period (0.23 ± 0.06) and the 2011−
2012 primary periods (0.45 ± 0.04)
(Table 3).

Abundance estimates ranged from
2.02 ± 0.13 to 3.31 ± 0.74 for females
and from 5.04 ± 0.20 to 7.06 ± 0.24 for
males (Table 4). Average MMDM val-
ues for all years were 8.51 ± 1.97 km
for females and 7.06 ± 1.74 for males
(Table 4). Maximum distance for a
single individual over 1 year was
22.67 km for a female and 24.44 km
for a male. The average ESA for the
3 years using half MMDM as a buffer
distance was 471.66 ± 112.14 km2 for
females and 668.50 ± 53.10 km2 for
males (Table 4).

Ocelot density estimates in the region varied from
0.49 ± 0.10 to 0.82 ± 0.04 ind. 100 km−2 for females
and from 0.78 ± 0.03 to 1.16 ± 0.19 ind. 100 km−2 for
males (Table 4).

According to the SECR models, sigma (σ; range
parameter of the species) values ranged from 1.76 ±
0.45 to 6.25 ± 2.08 km for females and 2.67 ± 0.31 to
5.01 ± 1.49 km for males. Density estimates were
lower than Barker robust design estimates (Table 4),
with ranges from 0.24 ± 0.14 to 0.68 ± 0.31 ind.
100 km−2 for females and from 0.45 ± 0.19 to 1.15 ±
0.27 ind. 100 km−2 for males (Table 4).

DISCUSSION

We present the first survival and density study of
ocelots Leopardus pardalis in the northernmost part
of the species’ range in Sonora, Mexico. The appar-
ent survival for this population remained constant
throughout the study period. Its average value (0.64)
is lower in comparison with resident adult ocelots
(0.87) in the Laguna Atascosa National Wildlife
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Model AICc ΔAICc AICc weights Model likelihood K

ϕ(.), R(.), F (.), p(digital), a′(0), a″(1) 345.66 0.00 0.52 1.00 5
ϕ(.), R(.), F (sex), p(digital), a′(0), a″(1) 347.54 1.88 0.20 0.39 6
ϕ(.), R(sex), F (sex), p(digital), a′(0), a″(1) 347.60 1.93 0.20 0.38 7
ϕ(sex), R(sex), F (sex), p(digital), a′(0), a″(1) 349.48 3.82 0.08 0.15 8

Table 2. Four best-supported models for ocelot (Leopardus pardalis) study using Barker robust design for data analysis
(Kendall et al. 2013). AICc: corrected Akaike’s information criteria, K: number of estimable parameters, ϕ: apparent survival,
p: detection probability, R: resight probability, F: fidelity probability, a’’: available, a’: not available. Dead recovery-related
parameters (r and R′) were fixed to 0 for all models. In the parentheses following the parameters, (.): constant among years and
between sex, (0): parameter fixed to 0, (1): parameter fixed to 1, (digital): parameter estimate depends on new digital remote 

camera inclusion, and (sex): parameter estimate depends on sex but is equal among years

Year Parameter
ϕ p R F

Females
2010 0.65 ± 0.12 0.23 ± 0.06 0.82 ± 0.17 0.67 ± 0.19
2011 0.65 ± 0.12 0.45 ± 0.04 0.82 ± 0.17 0.67 ± 0.19
2012 0.64 ± 0.12 0.45 ± 0.04 0.82 ± 0.17 0.67 ± 0.19
Males
2010 0.63 ± 0.10 0.23 ± 0.06 0.91 ± 0.11 0.58 ± 0.15
2011 0.63 ± 0.10 0.45 ± 0.04 0.91 ± 0.11 0.58 ± 0.15
2012 0.63 ± 0.10 0.45 ± 0.04 0.91 ± 0.11 0.58 ± 0.15

Table 3. Model average parameter estimates (±SE) obtained from ocelot
(Leopardus pardalis) study in Sonora, Mexico from 2010−2012 using Barker
robust design (Kendall et al. 2013). ϕ: apparent survival, p: detection proba-

bility, R: resight probability, F: fidelity probability
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Refuge (LANWR) in Texas, but similar to the survival
estimate for transients (0.57) in the same area
(Haines et al. 2005). In LANWR, human activities (i.e.
vehicle collisions, dog attacks, poisoning) are the
main threats to ocelot survival (Haines et al. 2005). In
South American tropical forests, ocelots are deci-
mated by habitat loss (Massara et al. 2015), which is
replacing illegal hunting as the major threat (Sun-
quist & Sunquist 2002). Human activities and density
in our study area and the adjacent mountainous re -
gions of Sonora are limited to cattle ranching and
localized mining, producing a non-threatening con-
tinuum environment for ocelots, although a certain
degree of poaching has been documented elsewhere
in the region (López-González et al. 2003). The low
survival of ocelots in Sonora is possibly associated
with natural causes such as prolonged droughts,
intense freezes, or wildfires that directly or indirectly
influence dense canopy cover and prey availability.

We modeled 1 year following a hard freeze in 2011,
and we found a non-significant decline in male ocelot
survival from 2011 to 2012. The freezing event did
not explain ocelot survival values in our model selec-
tion; however, freeze effects could become apparent
in the subsequent years not included in our study.
Long-lived species such as ocelots may require long-
term research to assess and distinguish any effect of
this kind of natural phenomena over population
dynamics (Lebreton et al. 1992).

In addition to environmental processes, interspe-
cific and intraspecific killing can contribute to low
species survival within the Sonoran ocelot popula-
tion. Intraspecific killing was documented in LANWR
(Haines et al. 2005). Pumas Puma concolor are known
to kill but not predate on ocelots (Nuñez et al. 2000).
Other large carnivores, such as jaguars Panthera
onca and coyotes Canis latrans, that inhabit the same
region can represent additional sources of interspe-

cific killing. More research is necessary to identify
the specific causes of mortality for ocelots in this area.

The detection probabilities we estimated are
among the highest values calculated for ocelot stud-
ies with remote cameras (e.g. Sternberg & Mays
2011, Pérez-Irineo & Santos-Moreno 2014). Detection
probabilities were almost double in the second and
third years (2011− 2012) in comparison with the first
year (Table 3). This could be due to the use of more
cameras with a faster trigger system in the years fol-
lowing 2010 (Table 1). Considering the current range
of digital camera models, we encourage the use of
those cameras that present the best detection rates
without  losing good image quality to prevent the loss
of information but also to facilitate reliable recogni-
tion of individuals.

Despite a growing number of arguments in favor or
against the use of traditional capture-recapture mod-
els over SECR models (i.e. Foster & Harmsen 2012,
de la Torre et al. 2016), our average MMDM value for
ocelots (Table 4) is similar to those obtained in Chi -
quibul, Belize, using radio-telemetry (Dillon & Kelly
2008). We lacked radio-telemetry data for ocelots in
this region, but consider that our ESA is large enough
for the estimation of an unbiased MMDM.

Regardless of the approach used for density esti-
mation, our calculations are the lowest reported across
all of the species’ distribution. Other studies that have
reported low ocelot population densities were under
human pressure: Atlantic Forest in Ya botí, Argentina,
where logging occurs (5.8 ± 1.6 ind. 100 km−2; Di
Bitetti et al. 2008); landscape fragmentation and iso-
lated populations in the Brazilian Atlantic Forest (2 ±
1 ind. 100 km−2; Massara et al. 2015); and land con-
version for agriculture in northeastern Mexi co (3 ±
0.2 ind. 100 km−2) (Martínez-Hernández et al. 2015).
Because of the low human population density in our
study area, we reiterate that our density results must
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Year Abundance MCP (km2) MMDM (km) σ (km) ESA (km2) Density (ind. 100 km−2)
BRD SECR

Females
2010 3.41 ± 0.74 405.32 10.38 ± 3.53 6.25 ± 2.08 695.66 0.49 ± 0.10 0.24 ± 0.14
2011 2.02 ± 0.13 428.85 3.58 ± 1.24 1.76 ± 0.45 349.85 0.58 ± 0.03 0.61 ± 0.31
2012 3.02 ± 0.16 299.23 4.57 ± 2.36 2.56 ± 0.83 369.48 0.82 ± 0.04 0.68 ± 0.31
Males
2010 6.83 ± 1.12 405.32 8.64 ± 2.11 5.01 ± 1.49 588.88 1.16 ± 0.19 0.70 ± 0.29
2011 7.06 ± 0.24 428.85 10.59 ± 2.45 2.67 ± 0.31 769.19 0.92 ± 0.03 1.16 ± 0.27
2012 5.04 ± 0.20 299.23 8.96 ± 2.04 3.58 ± 0.55 647.43 0.78 ± 0.03 0.45 ± 0.19

Table 4. Leopardus pardalis abundance, minimum convex polygon (MCP), maximum mean distances moved (MMDM), range
parameter of the species (σ), effective sampling area (ESA), and ocelot density estimated in Sonora, per year ± SE, with Barker 

robust design (BRD) and spatially explicit capture-recapture model (SECR)
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be associated with natural processes rather than
human-caused disturbance, without dismissing an
additive factor by the latter.

Contrasting seasonal changes, low precipitation,
and xeric vegetation types with open canopy cover in
the dry season have a negative influence over pri-
mary productivity and consequently on prey avail-
ability (Oliveira et al. 2010). Together they may be
contributing as limiting factors for ocelot survival and
density in this part of the species’ range, as has been
proposed for coexisting jaguar populations (Gutiérrez-
González et al. 2012). The habitat features de scribed
above can be considered non-typical or sub-optimal
ocelot habitats (Sunquist & Sunquist 2002). However,
it seems that large tracts of unpopulated wildlands
over a non-fragmented landscape allow ocelots to
survive in this area, hence the importance of main-
taining current habitat conditions for ocelots in order
for this Neotropical species to continue to thrive in
this region of North America.
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